Formation of self-assembled monolayers of pi-conjugated molecules on TiO2 surfaces by thermal grafting of aryl and benzyl halides

TitleFormation of self-assembled monolayers of pi-conjugated molecules on TiO2 surfaces by thermal grafting of aryl and benzyl halides
Publication TypeJournal Article
Year of Publication2012
AuthorsEnglish, CR, Bishop, LM, Chen, J, Hamers, RJ
JournalLangmuir
Date PublishedMarch 26, 2012
Abstract

We demonstrate the formation of molecular monolayers of π-conjugated organic molecules on nanocrystalline TiO2 surfaces through the thermal grafting of aryl and benzyl halides. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy were used to characterize the reactivity of aryl and benzyl chlorides, bromides, and iodides with TiO2 surfaces, along with controls consisting of non-halogenated compounds. Our results show that aryl and benzyl halides follow a similar reactivity trend (X=I>Br>Cl>>H). While the ability to graft benzyl halides is consistent with the well-known Williamson Ether Synthesis, the grafting of aryl halides has no similar precedent. The unique reactivity of the TiO2 surface is demonstrated using nuclear magnetic resonance spectroscopy to compare the surface reactions with the liquid-phase interactions of benzyl and aryl iodides with tert-butanol and tert-butoxide anion. While the aryl iodides show no detectable reactivity with a tert-butanol/tert-butoxide mixture, they react with TiO2 within 2 hours at 50oC. Atomic force microscopy studies show that grafting of 4-iodo-1-(trifluoromethyl)benzene onto the rutile TiO2(110) surface leads to a very uniform, homogeneous molecular layer with a thickness of ~ 0.4 nm, demonstrating formation of a dense molecular monolayer. Thermal grafting of aryl iodides provides a facile route to link π-conjugated molecules to TiO2 surfaces with the shortest possible linkage between the conjugated electron system and the TiO2.

DOI10.1021/la300271h